

14-16 июня 2017 годаPullman Sochi Centre

г. Сочи

да **ЯВТОДОР**Соорганизатор: **ЯВТОДОР**

Развитие скоростных магистралей: ЭФФЕКТИВНОСТЬ, КАЧЕСТВО, ИННОВАЦИИ

Некоммерческое партнерство «ГЛОНАСС»

ФЕДЕРАЛЬНЫЙ СЕТЕВОЙ ОПЕРАТОР В СФЕРЕ НАВИГАЦИОННОЙ ДЕЯТЕЛЬНОСТИ Постановление Правительства РФ от 25 мая 2012 № 522

ЦЕЛЬ:

РАЗВИТИЕ КОНКУРЕНТОСПОСОБНОЙ ОТРАСЛИ В СФЕРЕ НАВИГАЦИОННО-ИНФОРМАЦИОННЫХ УСЛУГ

КЛЮЧЕВЫЕ ЗАДАЧИ:

- совершенствование законодательной базы и выработка единой технической политики
- консолидация ресурсов и усилий государства и бизнеса для развития и внедрения навигационных продуктов и услуг в Российской Федерации и за рубежом
- создание глобальной экосистемы разработчиков, сервис и контент провайдеров, использующих технологии ГЛОНАСС

МЕЖДУНАРОДНОЕ СОТРУДНИЧЕСТВО:

- Глобальное внедрение продуктов и услуг на основе технологий ГЛОНАСС
- Реализация крупных государственных и международных проектов на базе инновационных российских решений
- Развитие партнёрской сети в странах СНГ, Юго-Восточной Азии, в Индии и на Ближнем Востоке
- НП «ГЛОНАСС» входит в состав Global UTM Association

УЧАСТНИКИ ПАРТНЁРСТВА: крупнейшие российские компании в сфере IT и телеком, производители ОЕМ-оборудования, сервис-провайдеры, ведущие центры исследований и разработок и системные интеграторы

2013

системы

Успешно завершен самый масштабный навигационный проект

НП «ГЛОНАСС» – единственный исполнитель проекта (2012-2015)

От идеи до реализации 8 лет

2007

• Рождение Идеи

2009 Решение Комиссии при Президенте

2010 Эскизное

проектирование

• Техническое проектирование

2011

2012

• Опытный • Развёртывание образец

2014

• Внедрение системы

2015

• Промышленная эксплуатация

Проект «ЭРА-ГЛОНАСС» всегда был в фокусе внимания руководства страны

Проект выполнен российскими компаниями

Госзаказчики

Основные результаты проекта «ЭРА-ГЛОНАСС»

- ✓ Подготовлены проекты: 15 ФЗ, 31 Постановления и 11 распоряжений Правительства РФ, 18 ведомственных актов
- ✓ На их основе приняты:
 3 ФЗ, 14 Постановлений и 8 распоряжений Правительства РФ, 12 ведомственных актов
- ✓ Выполнено:250 поручений Правительства РФ и ФОИВов
- ✓ Внесены изменения в Технический регламент Таможенного союза
- ✓ Приняты 19 национальных стандартов по АСН и ЭРА-ГЛОНАСС
- ✓ Проекты 8 межгосударственных стандартов
- ✓ Обеспечено создание системы сертификации и испытаний УВЭОС

«Подключенный» автомобиль: сферы использования

ПАРКОВОЧНОЕ ПРОСТРАНСТВО

позволяют снизить городской трафик до 30% за счет информирования водителей о наличии свободных парковочных мест и направления до места парковки

СТРАХОВАНИЕ, ЛИЗИНГ

позволяет рассчитывать страховую премию, параметры лизинга по существенно большему объёму статистических данных об использовании транспортных средств

АВТОСЕРВИС

дистанционная диагностика, сокращение времени на поставку необходимых запасных частей, согласование стоимости и сроков ремонта

ВИДЕОНАБЛЮДЕНИЕ/ВИДЕОРЕГИСТРАЦИЯ

идентификация транспортных средств, разбор ДТП

УПРАВЛЕНИЕ ТРАФИКОМ

управление режимами переключения светофоров, помощь водителю в выборе маршрута движения

РЕАГИРОВАНИЕ НА ДТП, ТЕХПОМОЩЬ

оперативное информирование об аварийных ситуациях и рисках их возникновения в транспортной, энергетической и экологической сферах, реагирование и помощь в дороге

ОБЩЕСТВЕННЫЙ ТРАНСПОРТ

оптимальная дистанция и интервалы движения, контроль соблюдения правил управления, контроль состояния водителя

БЕСПИЛОТНЫЙ ТРАНСПОРТ

оптимальное управление авиационным и наземным беспилотным транспортом

Одновременное использование умных телематических решений в различных сферах транспортной отрасли дает синергетический эффект повышения эффективности (около 30%) использования транспортных средств и инфраструктуры

«Подключенный» автомобиль: тренды развития рынка

Формирующиеся мировые стандарты

- «Логистика людей» (Logistics of People, LoP)
- «Логистика вещей» (Logistics of Things, LoT)
- «Логистический роуминг» (LR)
- Подключенный автомобиль (Connected Car)
- Электрический автомобиль

Ключевые технологические тренды

- Автономизация транспортных средств
- Цифровая трансформация логистики
- Развитие мультимодальных перевозок
- Увеличение числа «стыков» между средами
- Запрос на «мгновенную» доставку

Новые бизнес-модели

Совместные поездки (райдшэринг)

Рост глобальной абонентской базы составит до 30 млн пользователей в 2024 году. При этом выручка в будет расти со среднегодовой скоростью 34,8% до уровня 16,5 млрд долларов США

Поминутная аренда (кардшэринг)

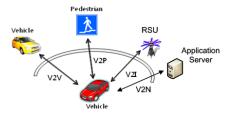
Рост глобальной абонентской базы составит до 30 млн пользователей в 2024 году. При этом выручка в будет расти со среднегодовой скоростью 34,8% до уровня 16,5 млрд долларов США

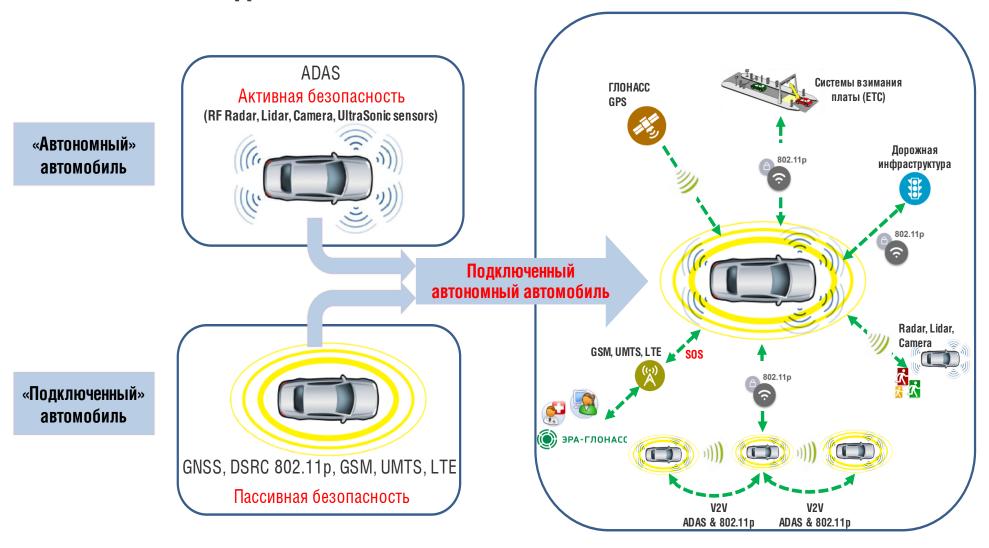
Агрегация транспортных услуг

- простота оплаты (35%)
- короткое время ожидания (30%)
- сокращение времени на дорогу (30%)
- простота использования (21%)

«Подключенный» автомобиль: новые технологии

• Технологии для услуг в автомобиле: связь, страхование, безопасность, платежи, информирование, техпомощь и другие


■ Технологии связи V2X (V2V, V2I, V2P, V2N): интеграция с ИТС и системами «Умного/Безопасного города», технологии Big Data и «облачные сервисы»


■ Навигация (и ГИС) для «умных» и беспилотных транспортных средств: «единая» (Outdoor-Indoor) повышенной точности и гарантированной надежности

Технологии связи «подключенного» автомобиля

V2X – vehicle-to-everything через LTE и ITS-G5/DSRC

Эффект от внедрения технологий V2X по результатам моделирования и пилотных проектов

Предотвращение 79% ДТП

- Предотвращение 81% ДТП с легковыми ТС
- Предотвращение 71% ДТП с грузовыми ТС

Предотвращение 26% ДТП

- Предотвращение 27% ДТП с легковыми ТС
- Предотвращение 15% ДТП с грузовыми ТС

Совместное внедрение технологий связи V2V и V2I обеспечит снижение числа ДТП более чем на 80%

В разных странах мира идут масштабные проекты по отработке технологий V2X

- C 2011 г. пилотные проекты Google, Toyota, Uber по беспилотным автомобилям
- С 2011 г. пилотный проект в г. Анн-Анбор, оборудовано 2800 ТС и 100 км дорог
- C 2013 г. пилотный проект Минтранса Connected Vehicle Certification Project: отработка принципов работы и требований к V2V
- В 2014 г. опубликован отчет Минтранса США, в котором определены фазы внедрения технологии V2X
- В 2015 г. выделено \$43М для создания пилотных зон в городах Нью-Йорк, Тампа и в штате Вайоминг
- В 2016 г. оповещение Минтранса США о введении обязательности оснащения всех новых ТС, начало публичного обсуждения стандарта
- **В 2017-2019 гг. планируется** создание инфраструктуры V2X
- В 2019 г. утверждение стандарта FMVSS #150, предусматривающего обязательность 100% оснащения всех новых легковых TC
- С 2021 г. вступление требования по обязательности оснащения в силу
- **C 2011 г. пилотный проект Drive Car2X** в составе консорциума 47 компаний: 260 TC, 760 водителей, 1.8 млн. км., 31 тыс. поездок по территории Германии, Франции, Италии и других стран
- В 2012 г. создан консорциум Car 2 Car: более 90 компаний производители автомобилей и электронного оборудования
- В 2013 г. утверждены стандарты ETSI EN и CEN в сфере Cooperative-ITS (C-ITS)
- C 2015 г. организованы пилотные проекты по беспилотным автомобилям BMW, Mercedes, Volvo и других
- В 2015 г. приняты общеевропейские программы строительства расширенной дорожной инфраструктуры вдоль основных транспортных коридоров
- В 2016 г. создан Европейский альянс автопроизводителей и телекоммуникационных компаний
- С 2019 г. планируется широкомасштабное внедрение C-ITS в странах Европы
- **C 2011 г.** внедрено более 2000 «ITS Spots», взаимодействующие с бортовым оборудование, предоставление ограниченного спектра V2X сервисов (информация о трафике и маршрутах объезда, сообщения безопасности, сбор информации о скорости движения, оплата проезда по платным дорогам, товаров и услуг ...)
- Принята программа до 2030 года по внедрению технологии V2X на транспорте

Контроль деформаций и смещений инфраструктуры скоростных магистралей

Актуальные задачи

- повышение оперативности реагирования на изменения состояния геомассивов сложных инженерных сооружений счет автоматизации их мониторинга на основе комплексного применения оборудования технологий геотехнического высокоточного смещений определения элементов конструкций подпорных сооружений.
- **автоматическое определение** (в реальном времени и в постобработке) параметров положения, движения, колебаний (трехмерных деформаций), напряженно-деформированного состояния объекта мониторинга;
- **автоматическое формирование сигналов** о достижении элементами конструкции объекта мониторинга предельных (заданных) параметров состояния.
- **автоматическая выдача диспетчеру** и внешним потребителям информации о технико-эксплуатационном состоянии контролируемых объектов.

Требования

- ✓ Мониторинг объектов 24 часа в сутки,7 дней в неделю и 365 дней в году
- Автоматический сбор и передача информации мониторинга через
 Интернет или другие каналы связи
- Высокая точность и однородность измерений, исключающую ошибки исполнителя измерений
- Контроль выхода параметров за допустимые пределы в реальном времени
- Удаленное управление режимами работы аппаратуры

Используемые технологии

Высокоточное навигационное позиционирование элементов объектов

Топогеодезические и инженерно-геологические изыскания

Мониторинг состояния (смещений, ориентации, деформации, напряжения) элементов объекта и прилегающих геомассивов

Передача данных о состоянии объекта в центр обработки

Автоматизированная обработка данных мониторинга

Цифровые модели объекта, рельефа и местности

Система мониторинга, построенная на основе оптимального комплексирования указанных технологий способна обеспечить надёжное измерение деформационных смещений с точностью около 2 см в реальном времени и до нескольких мм при постобработке

Система контроля деформаций и смещений объектов транспортной инфраструктуры

Возможности системы

- Программный комплекс позволяет автоматически собирать и обрабатывать информацию от объектовых комплексов.
- Обработанные данные поступают в APM оператора.
- Программный комплекс может одновременно работать с различными объектовыми комплексами, объединяя их в единую региональную или федеральную информационную систему

Реализованные проекты

- Система мониторинга деформации и смещений **Хостинской** зстакады и оползнеопасных склонов (верхний и нижний) на подходах к эстакаде, а также инженерного здания Хостинского тоннеля
- **С**истема мониторинга **комсомольского железнодорожного моста в г. Новосибирске**
- **С**истема мониторинга **Аксайского моста г. Ростов-на-Дону** трассы М4 Дон
- **Аксайскому мосту г. Ростов-на-Дону** трассы М4 Дон

Преимущества и эффект создания системы

КЛЮЧЕВЫЕ ПРЕИМУЩЕСТВА

ЭФФЕКТ СОЗДАНИЯ СИСТЕМЫ

- Переход от системы планово-предупредительных работ к эксплуатации по состоянию
- Оперативный мониторинг состояния сооружений, в т.ч. в реальном времени
- **Прогнозирование изменений состояния сооружений**
- **С**нижение затрат на диагностику состояния сооружений (особенно удаленных)
- Снижение затрат при проведении ремонтновосстановительных работ (15%)*
- Снижение затрат эксплуатирующей организации при оценке напряженно-деформированного состояния сооружений (15%)*

Создаваемое комплексное решение повысит эффективность эксплуатации сложных инженерных сооружений в автомобильном хозяйстве и прогнозирования возникновения критических состояний элементов инфраструктуры.

^{*}Экспертное заключение Института системного анализа РАН

Автонет НТИ – это рынок сервисов и услуг на основе интеллектуальных систем, платформ и сетей в логистике людей и вещей

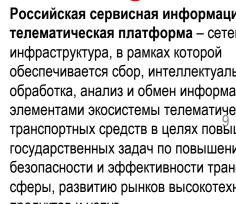
Рынок «подключенных» автомобилей и транспортной телематики

((A)) 3G/4G

СЕРВИС И КОНТЕНТ ПРОВАЙДЕРЫ

Техцентры

Техподдержка



Яндекс

Пилотный проект Дорожной карты «Автонет»

> Российская сервисная информационнотелематическая платформа – сетевая обеспечивается сбор, интеллектуальная обработка, анализ и обмен информацией между элементами экосистемы телематических транспортных средств в целях повышения государственных задач по повышению безопасности и эффективности транспортной сферы, развитию рынков высокотехнологичных продуктов и услуг 15

